282 research outputs found

    A preliminary phylogeny of Loasaceae subfam. Loasoideae (Angiospermae: Cornales) based on trnL(UAA) sequence data, with consequences for systematics and historical biogeography

    Get PDF
    AbstractThe phylogeny of Loasaceae subfam. Loasoideae is investigated with sequences of the chloroplast trnL(UAA) intron, all genera and infrageneric entities are included in the analysis. Loasaceae subfam. Loasoideae is monophyletic, and the two most speciose, and monophyletic, clades (which account for approximately 90% of the species total) are Nasa and the so-called Southern Andean Loasas (Blumenbachia, Caiophora, Loasa s.str., Scyphanthus), but the phylogeny of the remainder is not completely resolved. The data underscore a basal position for Chichicaste, Huidobria, Kissenia, and Klaprothieae (Xylopodia, Klaprothia, Plakothira). High bootstrap support values confirm the monophyly both of Klaprothieae and Presliophytum (when expanded to include Loasa ser. Malesherbioideae). Aosa and Blumenbachia are not resolved as monophyletic, but have clear morphological apomorphies. Within Nasa, “N. ser. Saccatae” is paraphyletic, and “N. ser. Carunculatae” is polyphyletic. However, the N. triphylla group in “N. ser. Saccatae” is a well-supported monophyletic group, as is N. ser. Grandiflorae. “Loasa” in its traditional circumscription is paraphyletic, but Loasa s.str. (L. ser. Macrospermae, L. ser. Deserticolae, L. ser. Floribundae) is monophyletic. The remainder of “Loasa” (L. ser. Pinnatae, L. ser. Acaules, L. ser. Volubiles) is probably closely allied to the essentially Patagonian-High Andean group comprising also Scyphanthus and Caiophora. These findings are congruent with morphology and phytogeography. Nasa seems to have undergone its primary radiation at moderate elevations (1500–2500m) in the Andes of northern Peru (Amotape-Huancabamba Zone) and subsequently diversified into high elevations (above 4000m) of the tropical Central Andes. South Andean Loasas appear to have undergone their primary diversification in the southern temperate and mediterranean regions of Chile and Argentina, with a subsequent northwards expansion of Caiophora into the high elevations of the tropical Andes. Hummingbird pollination has evolved independently from melittophily in High Andean clades of Nasa and Caiophora

    The fatal trajectory of pulmonary COVID-19 is driven by lobular ischemia and fibrotic remodelling

    Full text link
    Background: COVID-19 is characterized by a heterogeneous clinical presentation, ranging from mild symptoms to severe courses of disease. 9-20% of hospitalized patients with severe lung disease die from COVID-19 and a substantial number of survivors develop long-COVID. Our objective was to provide comprehensive insights into the pathophysiology of severe COVID-19 and to identify liquid biomarkers for disease severity and therapy response. Methods: We studied a total of 85 lungs (n = 31 COVID autopsy samples; n = 7 influenza A autopsy samples; n = 18 interstitial lung disease explants; n = 24 healthy controls) using the highest resolution Synchrotron radiation-based hierarchical phase-contrast tomography, scanning electron microscopy of microvascular corrosion casts, immunohistochemistry, matrix-assisted laser desorption ionization mass spectrometry imaging, and analysis of mRNA expression and biological pathways. Plasma samples from all disease groups were used for liquid biomarker determination using ELISA. The anatomic/molecular data were analyzed as a function of patients' hospitalization time. Findings: The observed patchy/mosaic appearance of COVID-19 in conventional lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The length of hospitalization was associated with increased intussusceptive angiogenesis. This was associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular profiling and metabolomic analysis. Increased plasma fibrosis markers correlated with their pulmonary tissue transcript levels and predicted disease severity. Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19. Interpretation: Pulmonary severe COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-COVID. Funding: This project was made possible by a number of funders. The full list can be found within the Declaration of interests / Acknowledgements section at the end of the manuscript

    Brain angioarchitecture and intussusceptive microvascular growth in a murine model of Krabbe disease

    Get PDF
    Abstract Defects of the angiogenic process occur in the brain of twitcher mouse, an authentic model of human Krabbe disease caused by genetic deficiency of lysosomal b-galactosylceramidase (GALC), leading to lethal neurological dysfunctions and accumulation of neurotoxic psychosine in the central nervous system. Here, quantitative computational analysis was used to explore the alterations of brain angioarchitecture in twitcher mice. To this aim, customized ImageJ routines were used to assess calibers, amounts, lengths and spatial dispersion of CD31? vessels in 3D volumes from the postnatal frontal cortex of twitcher animals. The results showed a decrease in CD31 immunoreactivity in twitcher brain with a marked reduction in total vessel lengths coupled with increased vessel fragmentation. No significant changes were instead observed for the spatial dispersion of brain vessels throughout volumes or in vascular calibers. Notably, no CD31? vessel changes were detected in twitcher kidneys in which psychosine accumulates at very low levels, thus confirming the specificity of the effect. Microvascular corrosion casting followed by scanning electron microscopy morphometry confirmed the presence of significant alterations of the functional angioarchitecture of the brain cortex of twitcher mice with reduction in microvascular density, vascular branch remodeling and intussusceptive angiogenesis. Intussusceptive microvascular growth, con- firmed by histological analysis, was paralleled by alterations of the expression of intussusception-related genes in twitcher brain. Our data support the hypothesis that a marked decrease in vascular development concurs to the onset of neuropathological lesions in twitcher brain and suggest that neuroinflammation-driven intussusceptive responses may represent an attempt to compensate impaired sprouting angiogenesis

    Stretch-induced intussuceptive and sprouting angiogenesis in the chick chorioallantoic membrane

    Get PDF
    Vascular systems grow and remodel in response to not only metabolic needs, but also mechanical influences as well. Here, we investigated the influence of tissue-level mechanical forces on the patterning and structure of the chick chorioallantoic membrane (CAM) microcirculation. A dipole stretch field was applied to the CAM using custom computer-controlled servomotors. The topography of the stretch field was mapped using finite element models. After 3 days of stretch, Sholl analysis of the CAM demonstrated a 7-fold increase in conducting vessel intersections within the stretch field (p 0.05). In contrast, corrosion casting and SEM of the stretch field capillary meshwork demonstrated intense sprouting and intussusceptive angiogenesis. Both planar surface area (p < 0.05) and pillar density (p < 0.01) were significantly increased relative to control regions of the CAM. We conclude that a uniaxial stretch field stimulates the axial growth and realignment of conducting vessels as well as intussusceptive and sprouting angiogenesis within the gas exchange capillaries of the ex ovo CAM.National Institutes of Health (U.S.) (NIH grant HL95678

    Sprouting and intussusceptive angiogenesis in postpneumonectomy lung growth: mechanisms of alveolar neovascularization

    Get PDF
    In most rodents and some other mammals, the removal of one lung results in compensatory growth associated with dramatic angiogenesis and complete restoration of lung capacity. One pivotal mechanism in neoalveolarization is neovascularization, because without angiogenesis new alveoli can not be formed. The aim of this study is to image and analyze three-dimensionally the different patterns of neovascularization seen following pneumonectomy in mice on a sub-micron-scale. C57/BL6 mice underwent a left-sided pneumonectomy. Lungs were harvested at various timepoints after pneumonectomy. Volume analysis by microCT revealed a striking increase of 143 percent in the cardiac lobe 14 days after pneumonectomy. Analysis of microvascular corrosion casting demonstrated spatially heterogenous vascular densitities which were in line with the perivascular and subpleural compensatory growth pattern observed in anti-PCNA-stained lung sections. Within these regions an expansion of the vascular plexus with increased pillar formations and sprouting angiogenesis, originating both from pre-existing bronchial and pulmonary vessels was observed. Also, type II pneumocytes and alveolar macrophages were seen to participate actively in alveolar neo-angiogenesis after pneumonectomy. 3D-visualizations obtained by high-resolution synchrotron radiation X-ray tomographic microscopy showed the appearance of double-layered vessels and bud-like alveolar baskets as have already been described in normal lung development. Scanning electron microscopy data of microvascular architecture also revealed a replication of perialveolar vessel networks through septum formation as already seen in developmental alveolarization. In addition, the appearance of pillar formations and duplications on alveolar entrance ring vessels in mature alveoli are indicative of vascular remodeling. These findings indicate that sprouting and intussusceptive angiogenesis are pivotal mechanisms in adult lung alveolarization after pneumonectomy. Various forms of developmental neoalveolarization may also be considered to contribute in compensatory lung regeneration. Electronic supplementary material The online version of this article (doi:10.1007/s10456-013-9399-9) contains supplementary material, which is available to authorized users

    Light-Induced Mechanistic Divergence in Gold(I) Catalysis:Revisiting the Reactivity of Diazonium Salts

    Get PDF
    In a systematic study of the Au-catalyzed reaction of o-alkynylphenols with aryldiazonium salts, we find that essentially the same reaction conditions lead to a change in mechanism when a light source is applied. If the reaction is carried out at room temperature using a AuI catalyst, the diazonium salt undergoes electrophilic deauration of a vinyl AuI intermediate and provides access to substituted azobenzofurans. If the reaction mixture is irradiated with blue LED light, C−C bond formation due to N2-extrusion from the diazonium salt is realized selectively, using the same starting materials without the need for an additional photo(redox) catalyst under aerobic conditions. We report a series of experiments demonstrating that the same vinyl AuI intermediate is capable of producing the observed products under photolytic and thermal conditions. The finding that a vinyl AuI complex can directly, without the need for an additional photo(redox) catalyst, result in C−C bond formation under photolytic conditions is contrary to the proposed mechanistic pathways suggested in the literature till date and highlights that the role of oxidation state changes in photoredox catalysis involving Au is thus far only poorly understood and may hold surprises for the future. Computational results indicate that photochemical activation can occur directly from a donor–acceptor complex formed between the vinyl AuI intermediate and the diazonium salt

    Quantitative analysis of airway obstruction in lymphangio-leio-myomatosis

    Get PDF
    Lymphangioleiomyomatosis (LAM) is a rare, cystic lung disease with progressive pulmonary function loss caused by progressively proliferating LAM cells. The degree of airway obstruction has not been well investigated within the pathogenesis of LAM. Using a combination of ex vivo computed tomography (CT), microCT and histology, the site and nature of airway obstruction in LAM explant lungs was compared with matched control lungs (n=5 each). The total number of airways per generation, total airway counts, terminal bronchioles number and surface density were compared in LAM versus control. Ex vivo CT analysis demonstrated a reduced number of airways from generation 7 on (p<0.0001) in LAM compared with control, whereas whole-lung microCT analysis confirmed the three- to four-fold reduction in the number of airways. Specimen microCT analysis further demonstrated a four-fold decrease in the number of terminal bronchioles (p=0.0079) and a decreased surface density (p=0.0079). Serial microCT and histology images directly showed the loss of functional airways by collapse of airways on the cysts and filling of the airway by exudate. LAM lungs show a three- to four-fold decrease in the number of (small) airways, caused by cystic destruction which is the likely culprit for the progressive loss of pulmonary function
    corecore